题目内容
【题目】已知等差数列的公差,数列满足,集合.
(1)若,,求集合;
(2)若,求使得集合恰有两个元素;
(3)若集合恰有三个元素,,T是不超过5的正整数,求T的所有可能值,并写出与之相应的一个等差数列的通项公式及集合.
【答案】(1);(2)或;(3)或4,时,,;时,,
【解析】
(1)根据等差数列的通项公式写出,进而求出,再根据周期性求解;(2)由集合的元素个数,分析数列的周期,进而可求得答案;(3)分别令,2,3,4,5进行验证,判断的可能取值,并写出与之相应的一个等差数列的通项公式及集合
(1)等差数列的公差,,数列满足,
集合.
当,
所以集合,0,.
(2),数列满足,集合恰好有两个元素,如图:
根据三角函数线,
①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,
②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,
综上,或者.
(3)①当时,,集合,,,符合题意.
与之相应的一个等差数列的通项公式为,此时.
②当时,,,,或者,
等差数列的公差,,故,,又,2
当时满足条件,此时,1,.
与之相应的一个等差数列的通项公式为,此时
练习册系列答案
相关题目