题目内容
【题目】米勒问题,是指德国数学家米勒1471年向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即可见角最大?)米勒问题的数学模型如下:如图,设 是锐角的一边上的两定点,点是边边上的一动点,则当且仅当的外接圆与边相切时,最大.若,点在轴上,则当最大时,点的坐标为( )
A.B.
C.D.
【答案】A
【解析】
设点的坐标为,求出线段的中垂线与线段的中垂线交点的横坐标,即可得到的外接圆圆心的横坐标,由的外接圆与边相切于点,可知的外接圆圆心的横坐标与点的横坐标相等,即可得到点的坐标。
由于点是边边上的一动点,且点在轴上,故设点的坐标为;
由于,则直线的方程为:,点为直线与轴的交点,故点的坐标为;由于为锐角,点是边边上的一动点,故;
所以线段的中垂线方程为: ;线段的中垂线方程为: ;
故的外接圆的圆心为直线与直线的交点,联立 ,解得: ;即的外接圆圆心的横坐标为
的外接圆与边相切于点,边在轴上,则的外接圆圆心的横坐标与点的横坐标相等,即,解得:或(舍)
所以点的坐标为;
故答案选A
练习册系列答案
相关题目