题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面积为 ,求a+b的值.
【答案】
(1)解:由已知及正弦定理得2cosC(sinAcosB+sinBcosA)=sinC,
即2cosCsin(A+B)=sinC,
故2sinCcosC=sinC,
可得 ,
所以 .
(2)解:由已知, ,
又 ,
所以ab=6,
由已知及余弦定理得a2+b2﹣2abcosC=7,
故a2+b2=13,从而(a+b)2=25,
所以a+b=5.
【解析】(1)由已知及正弦定理,两角和的正弦函数公式,诱导公式,三角形内角和定理化简已知可得2sinCcosC=sinC,由sinC≠0,可求cosC,结合C的范围即可得解.(2)由三角形面积公式可求C的值,进而可求ab,利用余弦定理即可得解a+b的值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.
练习册系列答案
相关题目