题目内容
【题目】设函数f(x)=ex+sinx,g(x)=ax,F(x)=f(x)﹣g(x).
(1)若x=0是F(x)的极值点,求a的值;
(2)当 a=1时,设P(x1 , f(x1)),Q(x2 , g(x2))(x1>0,x2>0),且PQ∥x轴,求P、Q两点间的最短距离;
(3)若x≥0时,函数y=F(x)的图象恒在y=F(﹣x)的图象上方,求实数a的取值范围.
【答案】
(1)解: F(x)=ex+sinx﹣ax,F′(x)=ex+cosx﹣a.
因为x=0是F(x)的极值点,所以F′(0)=1+1﹣a=0,a=2.
又当a=2时,若x<0,F'(x)=ex+cosx﹣a<0;若x>0,F'(x)=ex+cosx﹣a>0.
∴x=0是F(x)的极小值点,
∴a=2符合题意.
(2)解:∵a=1,且PQ∥x轴,由f(x1)=g(x2)得: ,
所以 .
令h(x)=ex+sinx﹣x,h′(x)=ex+cosx﹣1>0,当x>0时恒成立.
∴x∈[0,+∞)时,h(x)的最小值为h(0)=1.
∴|PQ|min=1.
(3)解:令φ(x)=F(x)﹣F(﹣x)=ex﹣e﹣x+2sinx﹣2ax.
则φ′(x)=ex+e﹣x+2cosx﹣2a.S(x)=φ′′(x)=ex﹣e﹣x﹣2sinx.
因为S′(x)=ex+e﹣x﹣2cosx≥0当x≥0时恒成立,
所以函数S(x)在[0,+∞)上单调递增,
∴S(x)≥S(0)=0当x∈[0,+∞)时恒成立;
因此函数φ′(x)在[0,+∞)上单调递增,φ′(x)≥φ′(0)=4﹣2a当x∈[0,+∞)时恒成立.
当a≤2时,φ′(x)≥0,φ(x)在[0,+∞)单调递增,即φ(x)≥φ(0)=0.
故a≤2时F(x)≥F(﹣x)恒成立.
【解析】(1)、根据题意先求出函数F(x)的函数表达式,再求出其导函数F′(x),令F′(0)=0便可求出a的值;(2)、根据题意可知(x1)=g(x2),令h(x)=x2﹣x1=ex+sinx﹣x,求出其导函数,进而求得h(x)的最小值即为P、Q两点间的最短距离;(3)、令φ(x)=F(x)﹣F(﹣x),求出其导函数,便可求出φ(x)的单调性,进而可求得a的取值范围.
【考点精析】本题主要考查了函数的极值的相关知识点,需要掌握极值反映的是函数在某一点附近的大小情况才能正确解答此题.
【题目】某高级中学在今年“五一”期间给校内所有教室安装了同一型号的空调,关于这批空调的使用年限单位:年和所支出的维护费用单位:千元厂家提供的统计资料如表:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
若x与y之间是线性相关关系,请求出维护费用y关于x的线性回归直线方程;
若规定当维护费用y超过千元时,该批空调必须报度,试根据的结论求该批空调使用年限的最大值结果取整数参考公式:,.