题目内容
【题目】已知0<α< ,cos(2π﹣α)﹣sin(π﹣α)=﹣
(1)求sinα+cosα的值;
(2)求sin(2α﹣ )的值.
【答案】
(1)解:∵已知0<α< ,cos(2π﹣α)﹣sin(π﹣α)=cosα﹣sinα=﹣ ,
平方可得1﹣2sinαcosα= ,∴2sinαcosα= ,
∴(sinα+cosα)2=1+2sinαcosα= ,∴sinα+cosα= .
(2)解:∵cosα﹣sinα=﹣ ,sinα+cosα= ,
∴sinα= ,cosα= ,∴sin2α=2sinαcosα= cos2α=2cos2α﹣1=﹣ ,
∴sin2αcos ﹣cos2αsin = ﹣(﹣ ) = .
【解析】(1)利用诱导公式,同角三角函数的基本关系,求得sinα+cosα的值.(2)利用求得sinα和cosα的值,再利用两角和差的三角公式、二倍角公式,求得sin(2α﹣ )的值.
【考点精析】解答此题的关键在于理解同角三角函数基本关系的运用的相关知识,掌握同角三角函数的基本关系:;;(3) 倒数关系:.
【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元. (Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.