题目内容

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

(1);(2)详见解析

解析试题分析:(1)有两种思路,其一是利用几何体中的垂直关系,以B为坐标原点,所在的直线分别为,轴,轴,轴建立空间直角坐标系,利用平面与平面的法向量的夹角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出该角的方法,利用平面平面,在平面内过点,垂足是,过作,垂足为,连结,得二面角的平面角,最后在直角三角形中求
(2)在空间直角坐标系中,设,求出平面的法向量,和平面的法向量
再由确定点的坐标,进而求线段的长度.
方法一(向量法):如图建立空间直角坐标系                    1分

(1)

设平面的法向量为,平面的法向量为
则有    3分
    5分
设二面角,则 
∴二面角的大小为60°。    6分
(2)设,   ∵
,设平面的法向量为
则有              10分
由(1)可知平面的法向量为
平面平面
此时,   

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网