题目内容
【题目】已知函数(为常数,为自然对数的底数)的图象在点处的切线与该函数的图象恰好有三个公共点,则实数的取值范围是( )
A.B.或
C.D.或
【答案】D
【解析】
利用导数的额几何意义求出切线方程,根据分段函数图象与切线恰好有三个公共点,得到当时,切线与有两个不同的交点,利用二次函数根的分布建立不等式关系,即可求出实数的取值范围.
解:由,,得,则(e),
在点处的切线方程为:,①
由于函数,②
由①②联立方程组可得:,
化简得:,③
要使得函数在点处的切线与该函数的图象恰好有三个公共点,
切线与,,在点有一个交点,
只需要满足③式在内有两个不相同的实数根即可,
则只需和抛物线对称轴小于1,且当时,
才能保证在内有两个不相同的实数根,
则,即,
解得:,
的范围:或.
故选:D.
练习册系列答案
相关题目
【题目】某农科院为试验冬季昼夜温差对反季节大豆新品种发芽的影响,对温差与发芽率之间的关系进行统计分析研究,记录了6天昼夜温差与实验室中种子发芽数的数据如下:
日期 | 1月1日 | 1月2日 | 1月3日 | 1月4日 | 1月5日 | 1月6日 |
温差(摄氏度) | 10 | 11 | 12 | 13 | 8 | 9 |
发芽数(粒) | 26 | 27 | 30 | 32 | 21 | 24 |
他们确定的方案是先从这6组数据中选出2组,用剩下的4组数据求回归方程,再用选取的两组数据进行检验.
(1)求选取的2组数据恰好是相邻2天数据的概率;
(2)若由线性回归方程得到的估计数据与实际数据的误差不超过1粒,则认为得到的线性回归方程是可靠的.请根据1月2,3,4,5日的数据求出关于的线性回归方程(保留两位小数),并检验此方程是否可靠.
参考公式:,