题目内容
设函数f(x)=。(1)对于任意实数x,f’(x)m恒成立,求m的最大值;(2)若方程f(x)=0有且仅有一个实根,求a的取值范围。
(1) (2)a<2或a>
解析
已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;(Ⅲ)若的最小值为1,求a的取值范围。
(本小题满分13分)已知是定义在上的奇函数,当时(1)求的解析式;(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.
(本小题满分12分)设函数 其中(Ⅰ)求的单调区间;(Ⅱ) 讨论的极值.
(本小题满分l4分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(1)求函数f(x)的解析式; (2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题14分)线的斜率是-5。(Ⅰ)求实数b、c的值;(Ⅱ)求f(x)在区间[-1,2]上的最大值;(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
已知函数:.(1)证明:++2=0对定义域内的所有都成立;(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];(3)若,函数=x2+|(x-) | ,求的最小值
已知函数 ()(为自然对数的底数)(1)求的极值(2)对于数列, ()① 证明:② 考察关于正整数的方程是否有解,并说明理由
(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)