题目内容

在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求证:直线过定点;
(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.
(1)2      (2)
(Ⅰ)由题意:设直线,
消y得:,设A、B,AB的中点E,则由韦达定理得: =,即,,所以中点E的坐标为E,因为O、E、D三点在同一直线上,所以,即,解得
,所以=,当且仅当时取等号,即的最小值为2.
(Ⅱ)(i)证明:由题意知:n>0,因为直线OD的方程为,所以由得交点G的纵坐标为,又因为,,且?,所以,又由(Ⅰ)知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).
(ii)假设点关于轴对称,则有的外接圆的圆心在x轴上,又在线段AB的中垂线上,
由(i)知点G(,所以点B(,又因为直线过定点(-1,0),所以直线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆半径为,圆的方程为.综上所述, 点关于轴对称,此时的外接圆的方程为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网