题目内容
【题目】在△ABC中,若tan =2sinC且AB=3,则△ABC的周长的取值范围 .
【答案】(4,5]
【解析】解:由tan =2sinC及 = ﹣ ,得cot =2sinC,
∴ =4sin cos
∵0< < ,cos >0,sin >0,
∴sin2 = ,sin = ,
∴ = ,
∴C= ,
在△ABC中,由正弦定理,得: = = = ,
△ABC的周长y=AB+BC+CA=3+ sinA+ sin( ﹣A)
=3+ ( sinA+ cosA)
=3+2sin(A+ ),
∵ <A+ < ,
∴ <sin(A+ )≤1,
所以,△ABC周长的取值范围是(4,5].
所以答案是:(4,5].
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.
【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(Ⅰ)求关于的线性回归方程 ;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)
参考公式:,
【题目】某单位名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第组的员工人数分别是多少?
(II)为了交流读书心得,现从上述人中再随机抽取人发言,设人中年龄在的人数为,求的数学期望;
(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 | 不喜欢阅读国学类 | 合计 | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合计 | 22 | 18 | 40 |
根据表中数据,我们能否有的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:,其中
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |