题目内容

11.数列{xn},x1=$\frac{3}{2}$,xn+1=$\left\{\begin{array}{l}{3{x}_{n},n为奇数}\\{{x}_{n}+n,n为偶数}\end{array}\right.$
(1)设yn=x2n-1+n+$\frac{1}{2}$,求证{yn}成等比数列;
(2)记x1+x2+x3+…x2n=S2n,求$\frac{{S}_{2n}+2{n}^{2}+4n}{{9}^{n}}$最大值.

分析 (1)由x1=$\frac{3}{2}$,xn+1=$\left\{\begin{array}{l}{3{x}_{n},n为奇数}\\{{x}_{n}+n,n为偶数}\end{array}\right.$,可得x2n+1=x2n+2n,x2n=x2n-1+1=3x2n-1.证明$\frac{{y}_{n+1}}{{y}_{n}}$为一常数即可;
(2)由(1)可得:yn=3n,可得${x}_{2n-1}={3}^{n}-n-\frac{1}{2}$.x2n=x2n+1-2n=${3}^{n+1}-3n-\frac{3}{2}$.可得x2n-1+x2n,即可得出S2n

解答 (1)证明:∵x1=$\frac{3}{2}$,xn+1=$\left\{\begin{array}{l}{3{x}_{n},n为奇数}\\{{x}_{n}+n,n为偶数}\end{array}\right.$,
∴x2n+1=x2n+2n,x2n=x2n-1+1=3x2n-1
∴$\frac{{y}_{n+1}}{{y}_{n}}$=$\frac{{x}_{2n+1}+(n+1)+\frac{1}{2}}{{x}_{2n-1}+n+\frac{1}{2}}$=$\frac{{3x}_{2n-1}+2n+(n+1)+\frac{1}{2}}{{x}_{2n-1}+n+\frac{1}{2}}$=$\frac{3({x}_{2n-1}+n+\frac{1}{2})}{{x}_{2n-1}+n+\frac{1}{2}}$=3,
∴数列{yn}成等比数列,首项为${x}_{1}+1+\frac{1}{2}$=3,公比为3;
(2)解:由(1)可得:yn=3n
∴${x}_{2n-1}+n+\frac{1}{2}$=3n
∴${x}_{2n-1}={3}^{n}-n-\frac{1}{2}$.
x2n=x2n+1-2n=${3}^{n+1}-(n+1)-\frac{1}{2}$-2n=${3}^{n+1}-3n-\frac{3}{2}$.
∴x2n-1+x2n=4•3n-4n-2.
∴S2n=x1+x2+x3+…x2n=4(3+32+…+3n)-4(1+2+…+n)-2n
=$4×\frac{3({3}^{n}-1)}{3-1}$-$4×\frac{n(1+n)}{2}$-2n
=6×3n-6-4n-2n2
∴$\frac{{S}_{2n}+2{n}^{2}+4n}{{9}^{n}}$=$\frac{6×{3}^{n}-6}{{9}^{n}}$=$-6(\frac{1}{{3}^{n}}-\frac{1}{2})^{2}$+$\frac{3}{2}$≤$\frac{4}{3}$,当且仅当n=1时取等号.
∴$\frac{{S}_{2n}+2{n}^{2}+4n}{{9}^{n}}$最大值为$\frac{4}{3}$.

点评 本题看到了递推式的应用、等比数列与等差数列的通项公式及其前n项和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网