题目内容

16.已知数列{an}的首项a1=1,且an+1=2an+1,则这个数列的第五项为(  )
A.31B.15C.11D.9

分析 通过对an+1=2an+1变形可知an+1+1=2(an+1),进而可知数列{an+1}是首项、公比均为2的等比数列,计算即得结论.

解答 解:∵an+1=2an+1,
∴an+1+1=2(an+1),
又∵a1+1=1+1=2,
∴数列{an+1}是首项、公比均为2的等比数列,
∴an+1=2n
∴${a}_{n}={2}^{n}-1$,
∴a5=25-1=31,
故选:A.

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网