题目内容
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面积为5 ,b=5,求sinA.
【答案】
(1)
解:∵3cosAcosB+1=3sinAsinB+cos2C,
∴3(cosAcosB﹣sinAsinB)+1=cos2C,
可得:3cos(A+B)+1=cos2C,
∴﹣3cosC+1=2cos2C﹣1,
可得:2cos2C+3cosC﹣2=0,
可得:(2cosC﹣1)(cosC+2)=0,
∴解得:cosC= 或cosC=﹣2(舍去),
∵0<C<π,
∴∠C=
(2)
解:∵S△ABC= absinC=5 ,b=5,C= ,可得:a=4,
∵由余弦定理可得:c2=a2+b2﹣2abcosC=16+25﹣2× =21,可得:c= ,
∴由正弦定理可得:sinA= = =
【解析】(1)移项,利用两角和的余弦函数公式,三角形内角和定理,二倍角的余弦函数公式,诱导公式化简已知可得2cos2C+3cosC﹣2=0,进而解得cosC,结合范围0<C<π,即可得解C的值.(2)由已知利用三角形面积公式可求a,由余弦定理可得c的值,进而利用正弦定理即可解得sinA的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.
练习册系列答案
相关题目