题目内容

【题目】已知),其导函数为,设,则_____________.

【答案】

【解析】

由函数f(x)=(x+1)(x+2)(x+3)…(x+n),(n≥2,n∈N),求其导函数,得f′(x)=(x+2)(x+3)…(x+n)+(x+1)(x+3)…(x+n)+…+(x+1)(x+2)…(x+n﹣1),从而得f′(﹣2),f(0);由an=,求得a10

∵函数f(x)=(x+1)(x+2)(x+3)…(x+n),(n≥2,n∈N),则

其导函数f′(x)=(x+2)(x+3)…(x+n)+(x+1)(x+3)…(x+n)+…+(x+1)(x+2)…(x+n﹣1),

∴f′(﹣2)=0+(﹣1)×1×…×(n﹣2)+0+…+0=﹣(n﹣2)!,f(0)=n!;

当an=时,有a10==﹣

故答案为:﹣

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网