题目内容
【题目】下列各函数在其定义域中,既是奇函数,又是增函数的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
【答案】D
【解析】解:A.根据y=x+1的图象知该函数不是奇函数,∴该选项错误; B.x增大时,﹣x3减小,即y减小,∴y=﹣x3为减函数,∴该选项错误;
C. 在定义域上没有单调性,∴该选项错误;
D.y=x|x|为奇函数, ;
y=x2在[0,+∞)上单调递增,y=﹣x2在(﹣∞,0)上单调递增,且y=x2与y=﹣x2在x=0处都为0;
∴y=x|x|在定义域R上是增函数,即该选项正确.
故选:D.
根据奇函数图象的特点,减函数的定义,反比例函数在定义域上的单调性,奇函数的定义,二次函数的单调性便可判断每个选项的正误,从而找到正确选项.
【题目】海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
【题目】某次大型运动会的组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成下面2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(2)能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关系?
(3)已知喜欢运动的女志愿者中恰有4人会外语,如果从中抽取2人负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
参考公式:K2= ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |