题目内容
【题目】某市房管局为了了解该市市民年月至年月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市年月至年月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应年月至年月).
(1)试估计该市市民的购房面积的中位数;
(2)现采用分层抽样的方法从购房面积位于的位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;
(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出年月份的二手房购房均价(精确到)
(参考数据),,,,,,
(参考公式)
【答案】(1) ; (2) (3) 模型的拟合效果更好;万元/平方米
【解析】
(1)先由频率分布直方图,求出前三组频率和与前四组频率和,确定中位数出现在第四组,根据中位数两侧的频率之和均为,即可得出结果;
(2)设从位于的市民中抽取人,从位于的市民中抽取人,根据分层抽样,求出,;由列举法确定从人中随机抽取人所包含的基本事件个数,以及满足条件的基本事件个数,进而可求出概率;
(3)根据题中数据,分别求出两种模型对应的相关指数,比较大小,即可确定拟合效果;再由确定的模型求出预测值即可.
(1)由频率分布直方图,可得,前三组频率和为,
前四组频率和为,
故中位数出现在第四组,且.
(2)设从位于的市民中抽取人,从位于的市民中抽取人,
由分层抽样可知:,则,
在抽取的人中,记名位于的市民为,,,位于的市民为则所有抽样情况为:,,,,,共6种.
而其中恰有一人在口的情况共有种,故所求概率
(3)设模型和的相关指数分别为,,
则,显然
故模型的拟合效果更好.
由年月份对应的代码为,
则万元/平方米
【题目】学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:
古文迷 | 非古文迷 | 合计 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
参考公式:,其中
参考数据:
0.500 | 0.400 | 0.250 | 0.050 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?
(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;