题目内容
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
【答案】(1)证明见解析(2)或
【解析】
(1)联立直线与抛物线的方程,利用根于系数关系,结合斜率表达式求得即可;
(2)由(1)可知,圆是以为直径的圆且圆的方程可化简为,联立圆与抛物线的方程得到,圆与抛物线有四个不同的交点等价于
解:(1)证明:依题意有,直线,
设,,,,直线与抛物线相交,
联立方程消去,化简得,
所以,.
又因为,所以直线的斜率.
同理,直线的斜率,
所以,,
所以,直线,即.
(2)由(1)可知,圆是以为直径的圆,
设是圆上的一点,则,
所以,圆的方程为,
又因为,
所以,圆的方程可化简为,
联立圆与抛物线得
消去,得,
即,即,
若方程与方程有相同的实数根,
则,矛盾,
所以,方程与方程没有相同的实数根,
所以,圆与抛物线有四个不同的交点等价于,
综上所述,.
【题目】下表列出了10名5至8岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合y与x的关系:
体重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
体积y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y关于x的线性回归方程(系数精确到0.01);
(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:,,,,
,,137×14=1918.00.
参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
【题目】某市房管局为了了解该市市民年月至年月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市年月至年月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应年月至年月).
(1)试估计该市市民的购房面积的中位数;
(2)现采用分层抽样的方法从购房面积位于的位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;
(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出年月份的二手房购房均价(精确到)
(参考数据),,,,,,
(参考公式)