题目内容
3.已知数列{an}是各项均为正数的等差数列,首项a1=1,其前n项和为Sn,数列{bn}是等比数列,首项b1=2,且b2S2=16,b3S3=72.(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k∈N*,求数列{cn}的前n(n≥3)项的和Tn.
分析 (Ⅰ)通过解方程组$\left\{\begin{array}{l}{2q(2+d)=16}\\{2{q}^{2}(3+3d)=72}\end{array}\right.$,进而计算即得结论;
(Ⅱ)通过分n是奇数、偶数两种情况讨论:当n=2k+1(k∈N*)时,T2k+1=1+(c2+c4+…+c2k)+(c3+c5+…+c2k+1)=1+(a1+a2+…+a2k)+(b1+2b2+…+kbk),利用等差数列的求和公式可知a1+a2+…+a2k=4k2,通过令M=b1+2b2+…+kbk=2+2•22+3•23+…+k•2k,利用错位相减法计算可知M=(k-1)•2k+1+2,进而T2k+1=3+4k2+(k-1)•2k+1;当n=2k+2(k∈N*)时,利用T2k+2=T2k+1+c2k+2计算即得结论.
解答 解:(Ⅰ)设数列{an}的公差为d(d>0),数列{bn}的公比为q,
则有:$\left\{\begin{array}{l}{2q(2+d)=16}\\{2{q}^{2}(3+3d)=72}\end{array}\right.$,
解得:d=q=2,
∴an=2+2(n-1)=2n-1,
bn=2•2n-1=2n;
(Ⅱ)解:分n是奇数、偶数两种情况讨论:
①当n=2k+1(k∈N*)时,
T2k+1=c1+c2+…+c2k+c2k+1
=1+(c2+c4+…+c2k)+(c3+c5+…+c2k+1)
=1+(a1+a3+…+a2k-1)+(a2+b1+a4+2b2+…+a2k+kbk)
=1+(a1+a2+…+a2k)+(b1+2b2+…+kbk),
显然,a1+a2+…+a2k=$\frac{2k(1+2•2k-1)}{2}$=4k2,
令M=b1+2b2+…+kbk=2+2•22+3•23+…+k•2k,
则2M=22+2•23+…+(k-1)•2k+k•2k+1,
两式相减得:-M=2+22+23+…+2k-k•2k+1
=$\frac{2(1-{2}^{k})}{1-2}$-k•2k+1
=(1-k)•2k+1-2,
∴M=(k-1)•2k+1+2,
∴T2k+1=1+4k2+(k-1)•2k+1+2=3+4k2+(k-1)•2k+1;
②当n=2k+2(k∈N*)时,
T2k+2=T2k+1+c2k+2
=3+4k2+(k-1)•2k+1+a2k+1
=4k2+4k+4+(k-1)•2k+1;
综上所述,Tn=$\left\{\begin{array}{l}{3+4{k}^{2}+(k-1)•{2}^{k+1},}&{n=2k+1}\\{4{k}^{2}+4k+4+(k-1)•{2}^{k+1},}&{n=2k+2}\end{array}\right.$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.
t | 0 | 0.2 | 0.4 | 0.6 | 0.8 |
y | -4 | 0 | 4 | 0 | -4 |
A. | -$\frac{1}{2}$ | B. | 0 | C. | 1 | D. | -1 |
A. | 2 | B. | -$\frac{1}{2}$ | C. | -1 | D. | $\frac{1}{2}$ |
A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | -1 | D. | 1 |
A. | 32 | B. | 64 | C. | 128 | D. | 256 |