题目内容

(08年银川一中一模) (10分) 如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.

   (1)求证:AD∥EC;

   (2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长;

 

 

解析:(1)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,

      又∵∠BAC=∠E,∴∠D=∠E。∴AD∥EC  (4分)

        (2)设BP=x,PE=y,∵PA=6,PC=2,∴xy=12,①

∵AD∥EC,∴②,

由①②可得,(舍去)∴DE=9+x+y=16,

∵AD是⊙O2的切线,

∴AD2=DBDE=9×16,

∴AD=12。(6分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网