题目内容

(08年银川一中一模理)  (12分)如图已知椭圆的中心在原点,焦点在x轴上,长轴是短轴的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),且交椭圆于A、B两点.

   (1)求椭圆的方程;

   (2)求m的取值范围;

   (3)求证:直线MA、MB与x轴围成一个等腰三角形。说明理由。

 

解析:(I)设椭圆方程为(a>b>0)

     ∴椭圆方程

(II) ∵直线∥DM且在y轴上的截距为m,∴y=x+m

与椭圆交于A、B两点

∴△=(2m)2-4(2m2-4)>0-2(m≠0)

(Ⅲ)设直线MA、MB斜率分别为k1,k2,则只要证:k1+k2=0

设A(x1,y1),B(x2,y2),则k1=,k2=

由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

而k1+k2=+= (*)

又y1=x1+m  y2=x2+m

∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

=x1x2+(m-2)(x1+x2)-4(m-1)

=2m2-4+(m-2)(-m)-4(m-1)

  =0

∴k1+k2=0,证之.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网