题目内容
(08年银川一中一模文) (12分)如图,在底面是正方形的四棱锥P―ABCD中,PA=AC=2,PB=PD=
(1)证明PA⊥平面ABCD;
(2)已知点E在PD上,且PE:ED=2:1,点F为棱PC的中点,证明BF//平面AEC。
(3)求四面体FACD的体积;
解析:证明:(I)因为在正方形ABCD中,AC=2 ∴AB=AD=
可得:在△PAB中,PA2+AB2=PB2=6。
所以PA⊥AB
同理可证PA⊥AD
故PA⊥平面ABCD (4分)
(II)取PE中点M,连接FM,BM,
连接BD交AC于O,连接OE
∵F,M分别是PC,PF的中点,
∴FM∥CE,
又FM面AEC,CE面AEC
∴FM∥面AEC
又E是DM的中点
OE∥BM,OE面AEC,BM面AEC
∴BM∥面AEC且BM∩FM=M
∴平面BFM∥平面ACE
又BF平面BFM,∴BF∥平面ACE (4分)
(3)连接FO,则FO∥PA,因为PA⊥平面ABCD,则FO⊥平面ABCD,所以FO=1,
SACD=1,
∴VFACD=VF――ACD= (4分)
练习册系列答案
相关题目