题目内容
【题目】已知集合,且中的元素个数大于等于5.若集合中存在四个不同的元素,使得,则称集合是“关联的”,并称集合是集合的“关联子集”;若集合不存在“关联子集”,则称集合是“独立的”.
分别判断集合和集合是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;
已知集合是“关联的”,且任取集合,总存在的关联子集,使得.若,求证:是等差数列;
集合是“独立的”,求证:存在,使得.
【答案】是关联的,关联子集有;是独立的;
证明见解析;
证明见解析
【解析】
(1)根据题中所给的新定义,即可求解;
(2)根据题意,,,,, ,进而利用反证法求解;
(3)不妨设集合,,且.
记,进而利用反证法求解;
解:是“关联的”关联子集有;
是“独立的”
记集合的含有四个元素的集合分别为:
,,,,
.
所以,至多有个“关联子集”.
若为“关联子集”,则不是 “关联子集”,否则
同理可得若为“关联子集”,则不是 “关联子集”.
所以集合没有同时含有元素的“关联子集”,与已知矛盾.
所以一定不是“关联子集”
同理一定不是“关联子集”.
所以集合的“关联子集”至多为.
若不是“关联子集”,则此时集合一定不含有元素的“关联子集”,与已知矛盾;
若不是“关联子集”,则此时集合一定不含有元素的“关联子集”,与已知矛盾;
若不是“关联子集”,则此时集合一定不含有元素的“关联子集”,与已知矛盾;
所以都是“关联子集”
所以有,即
,即.
,即,
所以.
所以是等差数列.
不妨设集合,,且.
记.
因为集合是“独立的”的,所以容易知道中恰好有个元素.
假设结论错误,即不存在,使得
所以任取,,因为,所以
所以
所以任取,
任取,
所以,且中含有个元素.
(i)若,则必有成立.
因为,所以一定有成立.所以.
所以
,,
所以,所以,有矛盾,
(ii)若,
而中含有个元素,所以
所以,
因为,所以.
因为,所以
所以
所以,矛盾.
所以命题成立.
【题目】某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:,,,…,(单位:元),得到如图所示的频率分布直方图:
(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为“健身达人”与性别有关?
健身达人 | 非健身达人 | 总计 | |
男 | 10 | ||
女 | 30 | ||
总计 |
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
0.100 | 0.050 | 0.010 | 0.005 | ||
2.072 | 2.706 | 3.841 | 6.635 | 7.879 |