题目内容

【题目】某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.

(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;

(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为,求的分布列及数学期望

【答案】(Ⅰ);(Ⅱ)见解析.

【解析】试题分析:(I)利用频数之和为80,可得位置①处的数据,利用频数除以总数,可得位置②处的数据;(II)由题意可知,第6,7,8组共有32人,抽8人,确定6,7,8组抽取的人数,可得概率,从而可求X的分布列和数学期望.

试题解析:

(Ⅰ)

(Ⅱ)的所有可能取值为1,2,3,4. 

.

分布列为:

1

2

3

4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网