题目内容

(本小题满分14分)如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行于AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。

(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为, 求椭圆的方程.

(Ⅰ)(Ⅱ)

解析试题分析:解∵焦点为F(c, 0), AB斜率为, 故CD方程为y=(x-c). 于椭圆联立后消去y得2x2-2cx-b2="0." ∵CD的中点为G(), 点E(c, -)在椭圆上,
∴将E(c, -)代入椭圆方程并整理得2c2=a2, ∴e =.
(Ⅱ)由(Ⅰ)知CD的方程为y=(x-c),  b="c," a=c.
与椭圆联立消去y得2x2-2cx-c2=0.
∵平行四边形OCED的面积为S=c|yC-yD|=c
=c, ∴c=, a="2," b=. 故椭圆方程为
考点:离心率及直线与椭圆的位置关系
点评:求离心率关键是找到关于的齐次方程

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网