题目内容
(满分12分)
(1)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围;
(2)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围.
(1)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围;
(2)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围.
(Ⅰ)是增函数对于任意恒成立
对于任意恒成立,令
当时,不等式恒成立;当时,不等式恒成立;
当时,的最小值,即或
故或
综上所述,或,即
解法二:得到
(Ⅱ)是增函数对于任意恒成立
对于任意恒成立
对于任意恒成立,令,,
所以原问题,又
即 易求得。
对于任意恒成立,令
当时,不等式恒成立;当时,不等式恒成立;
当时,的最小值,即或
故或
综上所述,或,即
解法二:得到
(Ⅱ)是增函数对于任意恒成立
对于任意恒成立
对于任意恒成立,令,,
所以原问题,又
即 易求得。
略
练习册系列答案
相关题目