题目内容
【题目】已知四面体ABCD中AB⊥面BCD,BC⊥DC,BE⊥AD垂足为E,F为CD中点,AB=BD=2,CD=1.
(1)求证:AC∥面BEF;
(2)求点B到面ACD的距离.
【答案】(1)见解析;(2).
【解析】
(1)先证得,然后利用直线与平面平行的判定定理,即可证得AC∥面BEF;
(2)设点到平面的距离为,利用,即可求得点B到面ACD的距离.
(1)因为BE⊥AD,AB=BD,所以E为AD中点,
又因为F是CD中点,所以AC∥EF,
而AC面BEF,EF面BEF,所以AC∥面BEF.
(2)由已知,可得BC,AD,AC,,
因为,所以为直角三角形其面积,
又由BC⊥DC,且,所以,
BCD的面积,
设点B到面ACD的距离为h,
因为VA﹣BCD=VB﹣ACD,即,解得,
所以点B到面ACD的距离为.
【题目】孝感市某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中用分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如表:
类 | 类 | 类 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中的值;
(2)根据表中的统计数据,完成下面的列联表,井判断是否有90%的把握认为“参加阅读与否”与性别有关;
男生 | 女生 | 总计 | |
不参加课外阅读 | |||
参课外阅读 | |||
总计 |
(3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类女生人数,求X的数学期望.
附:.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了组数据作为研究对象,如下表所示((吨)为该商品进货量,(天)为销售天数):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根据上表提供的数据,求出关于的线性回归方程;
(Ⅱ)在该商品进货量(吨)不超过(吨)的前提下任取两个值,求该商品进货量(吨)恰有一个值不超过(吨)的概率.
参考公式和数据:,.,.