题目内容
(本小题满分14分)已知函数.
(Ⅰ)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(Ⅱ)若函数f(x)的图象在x = 1处的切线的斜率为0,且,已
知a1 = 4,求证:an³ 2n + 2;
(Ⅲ)在(Ⅱ)的条件下,试比较与的大小,并说明你的理由.
(1),.
要使函数f(x)在定义域内为单调函数,则在内恒大于0或恒小于0,
当在内恒成立;
当要使恒成立,则,解得,
当恒成立,
所以的取值范围为. ------------------4分
(2)根据题意得:,
于是,
用数学归纳法证明如下:
当,不等式成立;
假设当时,不等式成立,即也成立,
当时,,
所以当,不等式也成立,
综上得对所有时,都有. ----------------9分
(3) 由(2)得,
于是,所以,
累乘得:,所以. --14分
解析
练习册系列答案
相关题目