题目内容

9.说明下列极坐标方程表示什么曲线,并画圆.
(1)ρ=$\frac{π}{3}$;
(2)ρcosθ=2;
(3)ρ=3;
(4)ρ=6cosθ;
(5)ρ=10sinθ.

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2即可化为直角坐标方程.

解答 解:(1)ρ=$\frac{π}{3}$,表示圆:x2+y2=$\frac{{π}^{2}}{9}$;
(2)ρcosθ=2,表示直线x=2;
(3)ρ=3表示圆:x2+y2=9;
(4)ρ=6cosθ,化为ρ2=6ρcosθ,即x2+y2=6x,配方为(x-3)2+y2=9,表示以(3,0)为圆,3为半径的圆;
(5)ρ=10sinθ,化为ρ2=10ρsinθ,
即x2+y2=10y,配方为x2+(y-5)2=25,表示以(0,5)为圆,5为半径的圆.

点评 本题考查了极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网