题目内容
【题目】如图正方体的棱长为1,线段上有两个动点且,则下列结论错误的是( )
A. 与所成角为
B. 三棱锥的体积为定值
C. 平面
D. 二面角是定值
【答案】A
【解析】
利用线面平行和线面垂直的判定定理和棱锥的体积公式以及二面角的定义对选项进行逐个判断即可得到答案.
选项A,AC⊥BD,AC⊥BB1,且BD AC⊥面DD1B1B,即得AC⊥BE,此命题错误;
选项B, 由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故三棱锥A﹣BEF的体积为定值,此命题正确;
选项C,由正方体ABCD﹣A1B1C1D1的两个底面平行,EF在其一面上且EF与平面ABCD无公共点,故EF∥平面ABCD,此命题正确;
选项D,由于E、F为线段B1D1上有两个动点,故二面角A﹣EF﹣B的平面角大小始终是二面角A﹣B1D1﹣B的平面角大小,为定值,故正确;
故选:A.
【题目】疫情期间,有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用时间 | 10 | 11 | 12 | 13 |
通过公路1的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
(1)为进行某项研究,从所用时间为12的60辆汽车中随机抽取6辆,若用分层随机抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆:
(2)若从(1)的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率;
(3)假设汽车A只能在约定时间的前11h出发,汽车B只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车A和汽车B应如何选择各自的道路?