ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉÏÈÎÒâÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬ÇÒÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²µÄÓÒ½¹µãΪF£¬ÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬Âú×ãÁ½¸öÌõ¼þ£º¢ÙÏ߶ÎABµÄÖеãPÔÚÖ±Ïßx+2y=0ÉÏ£»¢Ú¡÷FABµÄÃæ»ýÓÐ×î´óÖµ£®Èç¹û´æÔÚ£¬ÇëÇó³öÃæ»ýµÄ×î´óÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Í¨¹ýÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉÏÈÎÒâÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬¼´µÃa=2£¬ÔÙÀûÓÃÀëÐÄÂÊ$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$¼°a2-b2=c2£¬¼ÆËã¿ÉµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©·ÖбÂÊ´æÔÚÓë²»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ£¬µ±Ð±ÂÊ´æÔÚʱ£¬Ö±Ïßl£ºy=kx+mÓëÍÖÔ²ÁªÁ¢£¬ÀûÓÃÏ߶ÎABÖеãÔÚÖ±Ïßx+2y=0ÉÏÇóµÃkµÄÖµ£¬Çó³ö|AB|£¬¼°µãF£¨$\sqrt{2}$£¬0£©µ½Ö±ÏßABµÄ¾àÀëd=$\frac{|\sqrt{2}+m|}{\sqrt{2}}$£¬±íʾ³öÈý½ÇÐεÄÃæ»ý£¬ÀûÓÃÇóµ¼ÊýµÄ·½·¨£¬¼´¿ÉÈ·¶¨¡÷FABµÄÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉÏÈÎÒâÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬
¡à2a=4£¬¼´a=2£¬
¡ßÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¡à$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬
ÓÖ¡ßa2-b2=c2£¬¡àa2=4£¬b2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨2£©½áÂÛ£º´æÔÚÂú×ãÌõ¼þµÄÖ±Ïßl£ºy=x+$\sqrt{2}$£¬S¡÷FAB×î´óΪ$\frac{8}{3}$£®
ÀíÓÉÈçÏ£º
ÓÉ£¨1£©ÖªF£¨$\sqrt{2}$£¬0£©£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬´Ëʱ·½³ÌΪ£ºx=t£¬
ÓÖ¡ßÏ߶ÎABµÄÖеãPÔÚÖ±Ïßx+2y=0ÉÏ£¬
¡àÖ±Ïßl£ºx=0£¬´ËʱA£¨0£¬$\sqrt{2}$£©£¬B£¨0£¬$-\sqrt{2}$£©£¬
´ËʱS¡÷FAB=$\frac{1}{2}¡Á|AB|¡Á|OF|$=$\frac{1}{2}¡Á2\sqrt{2}¡Á\sqrt{2}$=2£»
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬
A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬P£¨x0£¬y0£©£¬
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¨1+2k2£©x2+4kmx+2m2-4=0£¬
¡÷=16k2m2-4£¨1+2k2£©£¨2m2-2£©=8£¨6-m2£©£¾0£¬¡à$|m|£¼\sqrt{6}$£¬
ÓÉΤ´ï¶¨Àí£¬µÃx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{-2km}{1+2{k}^{2}}$£¬y0=kx0+m=$\frac{m}{1+2{k}^{2}}$£¬
¡ßÏ߶ÎABµÄÖеãPÔÚÖ±Ïßx+2y=0ÉÏ£¬¡àk=1£¬
¡à|AB|=$\sqrt{2}¡Á\frac{2\sqrt{2}¡Á\sqrt{6-{m}^{2}}}{3}$=$\frac{4\sqrt{6-{m}^{2}}}{3}$£¬
ÓÖ¡ßµãF£¨$\sqrt{2}$£¬0£©µ½Ö±ÏßABµÄ¾àÀëd=$\frac{|\sqrt{2}+m|}{\sqrt{2}}$£¬
¡àS¡÷FAB=$\frac{1}{2}|AB|d$=$\frac{1}{2}¡Á\frac{4\sqrt{6-{m}^{2}}}{3}¡Á$$\frac{|\sqrt{2}+m|}{\sqrt{2}}$=$\frac{\sqrt{2}}{3}|\sqrt{2}+m|\sqrt{6-{m}^{2}}$ £¨$|m|£¼\sqrt{6}$£¬m¡Ù0£©£¬
Éèu£¨m£©=$£¨6-{m}^{2}£©£¨m+\sqrt{2}£©^{2}$ £¨$|m|£¼\sqrt{6}$£¬m¡Ù0£©£¬
ÔòÁîu¡ä£¨m£©=0£¬¿ÉµÃm=-$\frac{3\sqrt{2}}{2}$»òm=-$\sqrt{2}$»òm=$\sqrt{2}$£¬
£¨¢Ù£©µ±-$\sqrt{6}$£¼m£¼-$\frac{3\sqrt{2}}{2}$ʱ£¬u¡ä£¨m£©£¾0£»
£¨¢Ú£©µ±-$\frac{3\sqrt{2}}{2}$£¼m£¼-$\sqrt{2}$ʱ£¬u¡ä£¨m£©£¼0£»
£¨¢Û£©µ±-$\sqrt{2}$£¼m£¼$\sqrt{2}$ʱ£¬u¡ä£¨m£©£¾0£»
£¨¢Ü£©µ±$\sqrt{2}$£¼m£¼$\sqrt{6}$ʱ£¬u¡ä£¨m£©£¼0£»
ÓÖu£¨-$\frac{3\sqrt{2}}{2}$£©=$\frac{3}{4}$£¬u£¨$\sqrt{2}$£©=32£¬¡àµ±m=$\sqrt{2}$ʱ£¬S¡÷FAB×î´óΪ$\frac{8}{3}$£»
×ÛÉÏËùÊö£¬´æÔÚÂú×ãÌõ¼þµÄÖ±Ïßl£ºy=x+$\sqrt{2}$£¬S¡÷FAB×î´óΪ$\frac{8}{3}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬Î¤´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÄÑÌ⣮
A£® | 3 | B£® | $\sqrt{3}$ | C£® | $\frac{3}{2}$ | D£® | 2$\sqrt{3}$ |
A£® | $\frac{1+\sqrt{3}}{2}$»ò$\frac{1-\sqrt{3}}{2}$ | B£® | $\frac{1+\sqrt{17}}{4}$ | C£® | $\frac{1+\sqrt{5}}{2}$»ò$\frac{1-\sqrt{5}}{2}$ | D£® | $\frac{1+\sqrt{5}}{2}$ |
A£® | f£¨x£©•g£¨x£©ÊÇÆ溯Êý | B£® | f£¨x£©•g£¨x£©ÊÇżº¯Êý | C£® | f£¨x£©+g£¨x£©ÊÇÆ溯Êý | D£® | f£¨x£©+g£¨x£©ÊÇżº¯Êý |