题目内容
从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(2)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人?
(3)在(2)中抽取的人中,随机抽取人,求分数在和各人的概率.
(1)该校高三学生本次数学考试的平均分为92分;(2)抽取的3人中分数在[130,150]的人有1人;(3).
解析试题分析:(1)根据由频率分布直方图,计算平均值的方法:分别取各个小矩形的宽的中点的横坐标乘以该组的频率,然后将这些乘积相加,即可得到该校高三学生本次数学考试的平均分的估计值;(2)先根据频率分布直方图确定分数在和的学生人数各有多少,然后按比例进行抽取,即可得到在[130,150]中应抽取的人数;(3)根据(2)中抽取的3人中,有2人的分数在,有一人的分数在,从而可确定基本事件总数,然后确定满足要求的基本事件数,根据古典概率的计算公式即可得到分数在和各人的概率.
试题解析:(1)由频率分布直方图,得该校高三学生本次数学考试的平均分为
0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100
+0.0125×20×120+0.0025×20×140=92. 4分
(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人
所以抽取的3人中分数在[130,150]的人有(人) 8分
(3)由(2)知:抽取的3人中分数在[30,50)的有2人,记为
分数在[130,150]的人有1人,记为,从中随机抽取2人
总的情形有三种.
而分数在[30,50)和[130,150]各1人的情形有两种
故所求概率 12分.
考点:1.频率分布直方图;2.平均值的计算;3.分层抽样;4.古典概率.
已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
x(kg) | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
y(t) | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
| ||||||||
年份 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | |
x(kg) | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
y(t) | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 | |
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)
已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002, ,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
(2)抽取的100的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
合计 |
(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求的最小值;
(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.