题目内容
已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
x(kg) | 70 | 74 | 80 | 78 | 85 | 92 | 90 | 95 |
y(t) | 5.1 | 6.0 | 6.8 | 7.8 | 9.0 | 10.2 | 10.0 | 12.0 |
| ||||||||
年份 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | |
x(kg) | 92 | 108 | 115 | 123 | 130 | 138 | 145 | |
y(t) | 11.5 | 11.0 | 11.8 | 12.2 | 12.5 | 12.8 | 13.0 | |
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)
(1) r>0.75 存在着很强的线性相关关系 (2) 14.675 2(t)
解析解:由已知数据,故每单位面积蔬菜产量与使用氮肥量的相关系数
r=
=≈0.863 2>0.75.
这说明每单位面积蔬菜产量与使用氮肥量之间存在着很强的线性相关关系.
(2)设所求的回归直线方程为=x+,
则=≈0.093 1,
=-=0.710 2,
则=0.093 1x+0.710 2.
当每单位面积菜地施肥150 kg时,
=0.093 1×150+0.710 2=14.675 2(t).
练习册系列答案
相关题目
为了了解高一年级学生的身高情况,某校按10%的比例对全校800名高一年级学生按性别进行抽样检查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190] |
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:男生身高频数分布表
身高(cm) | [150,155) | [150,160) | [160,165) | [165,170) | [170,175) | [175,180] |
频数 | 2 | 12 | 16 | 6 | 3 | 1 |
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.
某城市随机抽取一个月(天)的空气质量指数监测数据,统计结果如下:
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中重度污染 | 重度污染 |
天数 |
(1)根据以上数据估计该城市这天空气质量指数的平均值;
(2)若该城市某企业因空气污染每天造成的经济损失(单位:元)与空气质量指数(记为)的
关系式为
若在本月天中随机抽取一天,试估计该天经济损失大于元且不超过元的概率.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:
记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望;
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
| 甲班(方式) | 乙班(方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
附:
P(K2≥x0) | 0.050 | 0.010 | 0.001 |
x0 | 3.841 | 6.635 | 10.828 |
χ2=