题目内容
【题目】设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,则△ABC的面积为 .
【答案】
【解析】解:∵A=60°,a= ,
∴由正弦定理可得: ,可得:sinB= ,sinC= ,
∵sinB+sinC=6 sinBsinC,可得: + =6 × × ,化简可得:b+c=3 bc,
∴两边平方可得:b2+c2+2bc=18b2c2 , ①
又∵由余弦定理a2=b2+c2﹣2bccosA,可得:3=b2+c2﹣bc,②
∴联立①②可得:6b2c2﹣bc﹣1=0,解得:bc= ,或﹣ (舍去),
∴△ABC的面积S= bcsinA= = .
所以答案是: .
【考点精析】利用正弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:.
练习册系列答案
相关题目
【题目】中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占,他们在本学期期末考试中的物理成绩(满分100分)如下面的频率分布直方图:
(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).
(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,
①补充下面的列联表:
物理成绩优秀 | 物理成绩不优秀 | 合计 | |
对此事关注 | |||
对此事不关注 | |||
合计 |
②是否有以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |