题目内容

【题目】已知圆 与直线 相切.
(1)求圆 的方程;
(2)过点 的直线 截圆所得弦长为 ,求直线 的方程;
(3)设圆 轴的负半轴的交点为 ,过点 作两条斜率分别为 的直线交圆 两点,且 ,证明:直线 恒过一个定点,并求出该定点坐标.

【答案】
(1)解:

∵圆 与直线 相切,

∴圆心 到直线的距离为

∴圆 的方程为: .


(2)解:若直线 的斜率不存在,直线

此时直线 截圆所得弦长为 ,符合题意;

若直线 的斜率存在,设直线 ,即

由题意知,圆心到直线的距离为 ,解得:

此时直线

则所求的直线


(3)解:由题意知, ,设直线

与圆方程联立得:

消去 得:

,即

,用 代替 得:

∴直线 的方程为:

整理得:

则直线 定点为


【解析】(1)由圆与直线相切得到圆心到切线的距离公式等于圆的半径列出关于r的方程,求出其值即可求出圆的方程。(2)分两种情况:当直线的斜率不存在时直线x=1满足题意;当直线的斜率存在时,设出直线的方程,根据直线与圆的切线得到圆心到直线的距离d=r,列出关于k的方程解出方程求出k的值,进而得到直线的方程,(3)根据题意求出点A的坐标,设出直线AB的方程与圆的方程联立消去y得到关于x的一元二次方程,利用韦达定理表示出两根之积,将A的横坐标代入表示出B的横坐标,进而表示出B的纵坐标确定出B的坐标,由题中 k1 k2 = 2,表示出点C的坐标故可求出直线BC的解析式,进而可得出直线BC恒过一个定点,求出该点坐标即可。
【考点精析】掌握圆的标准方程和直线与圆的三种位置关系是解答本题的根本,需要知道圆的标准方程:;圆心为A(a,b),半径为r的圆的方程;直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网