题目内容
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
【答案】
(1)解:椭圆 =1(a>b>0)的焦距为2c,
由CF1⊥x轴.则C(﹣c,y0),y0>0,
由C在椭圆上,则y0= ,则C(﹣c, ),
由OC∥AB,则﹣ =kOC=kAB=﹣ ,则b=c,
e= = = ,
e的值
(2)解:设D(x1,y1),设 =λ ,
C(﹣c, ),F2(c,0),
故 =(2c,﹣ ), =(x1﹣c,y1),
由 =λ ,则2c=λ(x1﹣c),﹣ =λy1,则D( c,﹣ ),
由点D在椭圆上,则( )2e2+ =1,整理得:(λ2+4λ+3)e2=λ2﹣1,
由λ>0,e2= = =1﹣ ,
由 ≤e≤ ,则 ≤e2≤ ,则 ≤1﹣ ≤ ,
解得: ≤λ≤5,
∴ 的取值范围[ ,5]
【解析】(1)由CF1⊥x轴.则C(﹣c, ),根据直线的斜率相等,即可求得b=c,利用离心率公式即可求得e的值;(2)根据向量的坐标运算,求得D点坐标,代入椭圆方程,求得e2= =1﹣ ,由离心率的取值范围,即可求得λ的取值范围.
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种, 方案一:每满200元减50元:
方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 半价 | 7折 | 8折 | 原价 |
(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;
(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?