题目内容

【题目】已知函数f(x)=2sin(x+φ),且f(0)=1,f′(0)<0,则函数 图象的一条对称轴的方程为(
A.x=0
B.x=
C.x=
D.x=

【答案】A
【解析】解:∵函数f(x)=2sin(x+φ),且f(0)=1,f'(0)<0,∴2sinφ=1,且2cosφ<0,

∴可取φ= ,函数f(x)=2sin(x+ ).

∴函数 =2sin(x+ )=2cosx,故函数 图象的对称轴的方程为x=kπ,k∈z.

结合所给的选项,

故选:A.

【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网