题目内容
【题目】在中,三个内角所对的边分别为,满足.
(1) 求角的大小;
(2) 若,求,的值.(其中)
【答案】(1);(2)4,6
【解析】
(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.
(1)已知等式,
利用正弦定理化简得,
整理得,
即,
,
则.
(2)由,得, ①
又由(1) ,②
由余弦定理得,
将及①代入得,
,
,③
由②③可知与为一个一元二次方程的两个根,
解此方程,并由大于,可得.
练习册系列答案
相关题目
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额亿元 | 9 | 10 | 12 | 11 | 8 |
粮食产量万亿吨 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出关于的线性回归直线方程;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:,)