题目内容
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的列联表,并判断是否有的把握认为“阅读达人”跟性别有关?
附:参考公式
,其中.
临界值表:
【答案】(1);(2)没有的把握认为“阅读达人”跟性别有关.
【解析】试题分析:(1)利用该组区间的中点值与频率,即可估计该校学生的每天平均阅读时间;(2)利用数据及等高条形图,可得列联表,代入公式计算出,与临界值比较即可得到结论.
试题解析:(1)该校学生的每天平均阅读时间为:(分).
(2)由频数分布表得,“阅读达人”的人数是人,
根据等高条形图列联表
由于,故没有的把握认为“阅读达人”跟性别有关.
练习册系列答案
相关题目
【题目】某地通过市场调查得到西红柿种植成本(单位:元/千克)与上市时间(单位:天)的数据如下表:
时间 | |||
种植成本 |
(1)根据上表数据,发现二次函数能够比较准确描述与的变化关系,请求出函数的解析式;
(2)利用选取的函数,求西红柿最低种植成本及此时的上市天数.