题目内容
如图,已知椭圆C:x2 |
5 |
y2 |
3 |
m2 |
2 |
(1)是否存在k,使对任意m>0,总有
OA |
OB |
ON |
(2)若
OA |
OB |
1 |
2 |
分析:(1)椭圆C:
+
=1,c2=
-
=m2,c=m,F(m,0),直线AB:y=k(x-m),由
,得(10k2+6)x2-20k2mx+10k2m2-15m2=0.设A(x1,y1),B(x2,y2),然后结合韦达定理进行求解.
(2)
•
=x1x2+y1y2=x1x2+k2(x1-m)(x2-m)=(1+k2)x1x2-k2m(x1+x2)+k2m2=(1+k2)•由此结合
•
=-
(m3+4m),能够导出实数k的取值范围.
x2 | ||
|
y2 | ||
|
5m2 |
2 |
3m2 |
2 |
|
(2)
OA |
OB |
OA |
OB |
1 |
2 |
解答:解:(1)椭圆C:
+
=1,c2=
-
=m2,c=m,∴F(m,0),直线AB:y=k(x-m),
,(10k2+6)x2-20k2mx+10k2m2-15m2=0.设A(x1,y1),B(x2,y2),
则x1+x2=
,
x1x2=
;则xm=
=
,ym=k(xm-m)=
,
若存在k,使AB为ON的中点,∴
+
=2
.
∴
+
=(2xm,2ym)=(
,
),
即N点坐标为(
,
).由N点在椭圆上,
则
×(
)2+
×(
)2=
即5k4-2k2-3=0.∴k2=1或k2=-
(舍).故存在k=±1使
+
=
.
(2)
•
=x1x2+y1y2=x1x2+k2(x1-m)(x2-m)
=(1+k2)x1x2-k2m(x1+x2)+k2m2
=(1+k2)•
-k2m•
+k2m2=
m2,
由m2•
=-
(m3+4m),得m2•
=-
(m+
)≤-2m2,
即k2-15≤-20k2-12,k2≤
,∴-
≤k≤
,且k≠0.
x2 | ||
|
y2 | ||
|
5m2 |
2 |
3m2 |
2 |
|
则x1+x2=
20k2m |
10k2+6 |
x1x2=
10k2m2-15m2 |
10k2+6 |
x1+x2 |
2 |
10k2m |
10k2+6 |
-6km |
10k2+6 |
若存在k,使AB为ON的中点,∴
OA |
OB |
OM |
∴
OA |
OB |
20k2m |
10k2+6 |
-12km |
10k2+6 |
即N点坐标为(
20k2m |
10k2+6 |
-12km |
10k2+6 |
则
1 |
5 |
20k2m |
10k2+6 |
1 |
3 |
-12km |
10k2+6 |
m2 |
2 |
即5k4-2k2-3=0.∴k2=1或k2=-
3 |
5 |
OA |
OB |
ON |
(2)
OA |
OB |
=(1+k2)x1x2-k2m(x1+x2)+k2m2
=(1+k2)•
10k2m2-15m2 |
10k2+6 |
20k2m |
10k2+6 |
(k2-15) |
10k2+6 |
由m2•
(k2-15) |
10k2+6 |
1 |
2 |
k2-15 |
10k2+6 |
m2 |
2 |
4 |
m |
即k2-15≤-20k2-12,k2≤
1 |
7 |
| ||
7 |
| ||
7 |
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目