题目内容

如图,已知椭圆C:
x2
5
+
y2
3
=
m2
2
(m>0)
,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.
(1)是否存在k,使对任意m>0,总有
OA
+
OB
=
ON
成立?若存在,求出所有k的值;
(2)若
OA
OB
=-
1
2
(m3+4m)
,求实数k的取值范围.
精英家教网
分析:(1)椭圆C:
x2
5m2
2
+
y2
3m2
2
=1
c2=
5m2
2
-
3m2
2
=m2
,c=m,F(m,0),直线AB:y=k(x-m),由
y=k(x-m)
x2
5
+
y2
3
=
m2
2
(m>0)
,得(10k2+6)x2-20k2mx+10k2m2-15m2=0.设A(x1,y1),B(x2,y2),然后结合韦达定理进行求解.
(2)
OA
OB
=x1x2+y1y2
=x1x2+k2(x1-m)(x2-m)=(1+k2)x1x2-k2m(x1+x2)+k2m2=(1+k2)•由此结合
OA
OB
=-
1
2
(m3+4m)
,能够导出实数k的取值范围.
解答:解:(1)椭圆C:
x2
5m2
2
+
y2
3m2
2
=1
c2=
5m2
2
-
3m2
2
=m2
,c=m,∴F(m,0),直线AB:y=k(x-m),
y=k(x-m)
x2
5
+
y2
3
=
m2
2
(m>0)
,(10k2+6)x2-20k2mx+10k2m2-15m2=0.设A(x1,y1),B(x2,y2),
则x1+x2=
20k2m
10k2+6

x1x2=
10k2m2-15m2
10k2+6
;则xm=
x1+x2
2
=
10k2m
10k2+6
ym=k(xm-m)=
-6km
10k2+6

若存在k,使AB为ON的中点,∴
OA
+
OB
=2
OM

OA
+
OB
=(2xm,2ym)=(
20k2m
10k2+6
-12km
10k2+6
)

即N点坐标为(
20k2m
10k2+6
-12km
10k2+6
)
.由N点在椭圆上,
1
5
×(
20k2m
10k2+6
)
2
+
1
3
×(
-12km
10k2+6
)
2
=
m2
2

即5k4-2k2-3=0.∴k2=1或k2=-
3
5
(舍).故存在k=±1使
OA
+
OB
=
ON

(2)
OA
OB
=x1x2+y1y2
=x1x2+k2(x1-m)(x2-m)
=(1+k2)x1x2-k2m(x1+x2)+k2m2
=(1+k2)•
10k2m2-15m2
10k2+6
-k2m•
20k2m
10k2+6
+k2m2=
(k2-15)
10k2+6
m2
由m2
(k2-15)
10k2+6
=-
1
2
(m3+4m)
,得m2
k2-15
10k2+6
=-
m2
2
(m+
4
m
)
≤-2m2
即k2-15≤-20k2-12,k2
1
7
,∴-
7
7
≤k≤
7
7
,且k≠0.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网