题目内容

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.
分析:(Ⅰ)由椭圆的离心率为
3
2
,椭圆过定点P(2,1)及条件a2=b2+c2联立可求a2,b2,则椭圆的方程可求;
(Ⅱ)设出过P点的直线方程,和椭圆方程联立后由根与系数关系求出A的坐标,同理求出B的坐标,由两点式求出过AB直线的斜率,再设出AB的斜截式方程,利用三角形PMN的面积等于
3
2
就能求出截距,则直线AB的方程可求.
解答:解:(Ⅰ)由题意:
c2
a2
=
3
4
,∴c2=
3
4
a2
,∴b2=a2-c2=a2-
3
4
a2=
1
4
a2
①.
又∵P(2,1)在椭圆上,所以
4
a2
+
1
b2
=1
②.
联立①②得:a2=8,b2=2.
∴椭圆C的方程为
x2
8
+
y2
2
=1

(Ⅱ)设直线PA的方程为y-1=k(x-2),代入椭圆方程得:x2+4[k(x-2)+1]2=8,
整理得:(1+4k2)x2-8(2k-1)x+16k2-16k-4=0.
∵方程一根为2,由根与系数关系得2xA=
16k2-16k-4
1+4k2
,∴xA=
8k2-8k-2
1+4k2

yA=1+k(
8k2-8k-2
1+4k2
-2)=
-4k2-4k+1
1+4k2

∴A(
8k2-8k-2
1+4k2
-4k2-4k+1
1+4k2
)

∵PA与PB倾斜角互补,∴kPB=-kPA=-k.
则B(
8k2+8k-2
1+4k2
-4k2+4k+1
1+4k2
)

kAB=
yB-yA
xB-xA
=
-4k2+4k+1
1+4k2
-
-4k2-4k+1
1+4k2
8k2+8k-2
1+4k2
-
8k2-8k-2
1+4k2
=
1
2

设直线AB方程为y=
1
2
x+m
,即x-2y+2m=0,
则M(-2m,0),N(0,m)(m<0),
P到直线AB的距离为d=
|2m|
5

|MN|=
4m2+m2
=
5
|m|

SPMN=
1
2
×
|2m|
5
×
5
|m|=
3
2
.解得m=-
6
2
,或m=
6
2
(舍).
所以所求直线AB的方程为x-2y-
6
=0.
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、面积问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网