ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÍÖÔ²C£ºx2 |
a2 |
y2 |
b2 |
£¨1£©ÈôÔ²D¹ýA¡¢FÁ½µã£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßmÉϲ»´æÔÚµãQ£¬Ê¹¡÷AFQΪµÈÑüÈý½ÇÐΣ¬ÇóÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£®
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôÖ±ÏßmÓëxÖáµÄ½»µãΪK£¬½«Ö±ÏßlÈÆK˳ʱÕëÐýת
¦Ð |
4 |
·ÖÎö£º£¨1£©¸ù¾ÝÒÑÖªÔ²Çó³öÓëxÖá½»µã×ø±ê£¬È»ºóÇó³öb£¬Ð´³öÍÖÔ²·½³Ì£®
£¨2£©Éè³öÖ±ÏßmÓëxÖáµÄ½»µã£¬¸ù¾ÝÌâÒâFQ¡ÝFA£¬»¯¼ò¼´¿É£®
£¨3£©¸ù¾ÝÒÑÖªÔ²Çó³öÔ²Ðİ뾶£¬ÔÙ¸ù¾ÝPM¡ÍMD£¬Çó³ö×îÖµ£®
£¨2£©Éè³öÖ±ÏßmÓëxÖáµÄ½»µã£¬¸ù¾ÝÌâÒâFQ¡ÝFA£¬»¯¼ò¼´¿É£®
£¨3£©¸ù¾ÝÒÑÖªÔ²Çó³öÔ²Ðİ뾶£¬ÔÙ¸ù¾ÝPM¡ÍMD£¬Çó³ö×îÖµ£®
½â´ð£º½â£º£¨1£©Ô²x2+y2+x-3y-2=0ÓëxÖá½»µã×ø±êΪ£¬A£¨-2£¬0£©£¬F£¨1£¬0£©£¬
¹Êa=2£¬c=1£¬
ËùÒÔb=
£¬
ÍÖÔ²·½³ÌÊÇ£º
+
=1
£¨2£©ÉèÖ±ÏßmÓëxÖáµÄ½»µãÊÇQ£¬
ÒÀÌâÒâFQ¡ÝFA£¬
¼´
-c¡Ýa+c£¬
¡Ýa+2c£¬
¡Ý1+2
£¬
¡Ý1+2e£¬
2e2+e-1¡Ü0£¬0£¼e¡Ü
£®
£¨3£©Ö±ÏßlµÄ·½³ÌÊÇx-y-4=0£¬
Ô²DµÄÔ²ÐÄÊÇ(-
£¬
)£¬°ë¾¶ÊÇ
£¬
ÉèMNÓëPDÏཻÓÚH£¬ÔòHÊÇMNµÄÖе㣬
ÇÒPM¡ÍMD£¬
MN=2NH=2•
=2•
=2MD•
µ±ÇÒ½öµ±PD×îСʱ£¬MNÓÐ×îСֵ£¬
PD×îСֵ¼´ÊǵãDµ½Ö±ÏßlµÄ¾àÀëÊÇ
d=
=
£¬
ËùÒÔMNµÄ×îСֵÊÇ2¡Á
¡Á
=
£®
¹Êa=2£¬c=1£¬
ËùÒÔb=
3 |
ÍÖÔ²·½³ÌÊÇ£º
x2 |
4 |
y2 |
3 |
£¨2£©ÉèÖ±ÏßmÓëxÖáµÄ½»µãÊÇQ£¬
ÒÀÌâÒâFQ¡ÝFA£¬
¼´
a2 |
c |
a2 |
c |
a |
c |
c |
a |
1 |
e |
2e2+e-1¡Ü0£¬0£¼e¡Ü
1 |
2 |
£¨3£©Ö±ÏßlµÄ·½³ÌÊÇx-y-4=0£¬
Ô²DµÄÔ²ÐÄÊÇ(-
1 |
2 |
3 |
2 |
3
| ||
2 |
ÉèMNÓëPDÏཻÓÚH£¬ÔòHÊÇMNµÄÖе㣬
ÇÒPM¡ÍMD£¬
MN=2NH=2•
MD•MP |
PD |
MD•
| ||
PD |
1-
|
µ±ÇÒ½öµ±PD×îСʱ£¬MNÓÐ×îСֵ£¬
PD×îСֵ¼´ÊǵãDµ½Ö±ÏßlµÄ¾àÀëÊÇ
d=
|-
| ||||
|
6 | ||
|
ËùÒÔMNµÄ×îСֵÊÇ2¡Á
3
| ||
2 |
1-
|
3
| ||
2 |
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏß֪ʶµÄ×ÛºÏÔËÓã¬ÒÔ¼°ÍÖÔ²µÄ±ê×¼·½³Ì£¬Éæ¼°¶Ô֪ʶµÄÁé»îÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿