题目内容
【题目】已知函数.
(1)讨论的单调性;
(2)如果方程有两个不相等的解,且,证明:.
【答案】(1)见解析(2)见解析
【解析】
(1)对函数进行求导得,再对进行分类讨论,解不等式,即可得答案;
(2)当时,在单调递增,至多一个根,不符合题意;当时,在单调递减,在单调递增,则.不妨设,只要证,再利用函数的单调性,即可证得结论.
(1).
①当时,单调递增;
②当时,单调递减;
单调递增.
综上:当时,在单调递增;
当时,在单调递减,在单调递增.
(2)由(1)知,
当时,在单调递增,至多一个根,不符合题意;
当时,在单调递减,在单调递增,则.
不妨设,
要证,即证,即证,即证.
因为在单调递增,即证,
因为,所以即证,即证.
令
,
.
当时,单调递减,又,
所以时,,即,
即.
又,所以,所以.
【题目】有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一排组成.
| 明文字符 | A | B | C | D |
密码字符 | 11 | 12 | 13 | 14 | |
| 明文字符 | E | F | G | H |
密码字符 | 21 | 22 | 23 | 24 | |
| 明文字符 | M | N | P | Q |
密码字符 | 1 | 2 | 3 | 4 |
设随机变量表示密码中不同数字的个数.
(Ⅰ)求
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
span>女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.