题目内容
【题目】如图,在平面直角坐标系xOy中,椭圆 (a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e, )都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2= ,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.
【答案】
(1)解:由题设知a2=b2+c2,e= ,由点(1,e)在椭圆上,得 ,∴b=1,c2=a2﹣1.
由点(e, )在椭圆上,得
∴ ,∴a2=2
∴椭圆的方程为 .
(2)解:由(1)得F1(﹣1,0),F2(1,0),
又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.
设A(x1,y1),B(x2,y2),y1>0,y2>0,
∴由 ,可得(m2+2) ﹣2my1﹣1=0.
∴ , (舍),
∴|AF1|= ×|0﹣y1|= ①
同理|BF2|= ②
(i)由①②得|AF1|﹣|BF2|= ,∴ ,解得m2=2.
∵注意到m>0,∴m= .
∴直线AF1的斜率为 .
(ii)证明:∵直线AF1与直线BF2平行,∴ ,即 .
由点B在椭圆上知, ,∴ .
同理 .
∴PF1+PF2= =
由①②得, , ,
∴PF1+PF2= .
∴PF1+PF2是定值.
【解析】(1)根据椭圆的性质和已知(1,e)和(e, ),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2= ,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得 , ,由此可求得PF1+PF2是定值.
【考点精析】利用直线的斜率和椭圆的标准方程对题目进行判断即可得到答案,需要熟知一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα;椭圆标准方程焦点在x轴:,焦点在y轴:.
【题目】某地区2010年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的回归直线方程;
(2)利用(1)中的回归方程,分析2010年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别
【题目】一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望.