题目内容
【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
【答案】(Ⅰ)见解析;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;
(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;
(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.
(Ⅰ)证明:因为平面,所以;
因为底面是菱形,所以;
因为,平面,
所以平面.
(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,
因为,所以;
因为平面,平面,
所以;
因为
所以平面,
平面,所以平面平面.
(Ⅲ)存在点为中点时,满足平面;理由如下:
分别取的中点,连接,
在三角形中,且;
在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;
又平面,平面,所以平面.
练习册系列答案
相关题目
【题目】电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |