题目内容
【题目】已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
【答案】(1)(2)当n为偶数时,;当n为奇数时,.(3)
【解析】
(1)根据,讨论与两种情况,即可求得数列的通项公式;
(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.
(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.
(1)由题意可知,.
当时,,
当时,也满足上式.
所以.
(2)解法一:由(1)可知,
即.
当时,,①
当时,,所以,②
当时,,③
当时,,所以,④
……
当时,n为偶数
当时,n为偶数所以
以上个式子相加,得
.
又,所以当n为偶数时,.
同理,当n为奇数时,
,
所以,当n为奇数时,.
解法二:
猜测:当n为奇数时,
.
猜测:当n为偶数时,
.
以下用数学归纳法证明:
,命题成立;
假设当时,命题成立;
当n为奇数时,,
当时,n为偶数,由得
故,时,命题也成立.
综上可知, 当n为奇数时
同理,当n为偶数时,命题仍成立.
(3)由(2)可知.
①当n为偶数时,,
所以随n的增大而减小从而当n为偶数时,的最大值是.
②当n为奇数时,,
所以随n的增大而增大,且.
综上,的最大值是1.
因此,若对于任意的,不等式恒成立,只需,
故实数的取值范围是.
【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了,两个城市各100名观众,得到下面的列联表.
非常喜爱 | 喜爱 | 合计 | |
城市 | 60 | 100 | |
城市 | 30 | ||
合计 | 200 |
完成上表,并根据以上数据,判断是否有的把握认为观众的喜爱程度与所处的城市有关?
附参考公式和数据:(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |