题目内容
【题目】设函数,,.
(1)求函数的单调区间;
(2)若函数有两个零点,().
(i)求的取值范围;
(ii)求证:随着的增大而增大.
【答案】(1)见解析;(2)(i)(ii)证明见解析
【解析】
(1)求出导函数,分类讨论即可求解;
(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.
(1)因为,所以
当时,在上恒成立,所以在上单调递增,
当时,的解集为,的解集为,
所以的单调增区间为,的单调减区间为;
(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.
练习册系列答案
相关题目