题目内容
【题目】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A.
B.
C.
D.1
【答案】B
【解析】解:这是一个古典概型,从15个球中任取2个球的取法有 ;
∴基本事件总数为105;
设“所取的2个球中恰有1个白球,1个红球”为事件A;
则A包含的基本事件个数为 =50;
∴P(A)= .
故选:B.
首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.
【题目】某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.
(1)某校高二年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高二学生中抽取了90名学生的综合素质评价结果,其各个等级的频数统计如表:
等级 | 优秀 | 合格 | 不合格 |
男生(人) | 30 | x | 8 |
女生(人) | 30 | 6 | y |
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)以(1)中抽取的90名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高二学生中随机抽取4人.
(i)求所选4人中恰有3人综合素质评价为“优秀”的概率;
(ii)记X表示这4人中综合素质评价等级为“优秀”的人数,求X的数学期望.
附:参考数据与公式
参考公式:K2= ,其中n=a+b+c+d.