题目内容
【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn .
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.
【答案】解:(Ⅰ)∵anbn+1+bn+1=nbn .
当n=1时,a1b2+b2=b1 .
∵b1=1,b2= ,
∴a1=2,
又∵{an}是公差为3的等差数列,
∴an=3n﹣1,
(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn .
即3bn+1=bn .
即数列{bn}是以1为首项,以 为公比的等比数列,
∴{bn}的前n项和Sn= = (1﹣3﹣n)= ﹣ .
【解析】(Ⅰ)令n=1,可得a1=2,结合{an}是公差为3的等差数列,可得{an}的通项公式;(Ⅱ)由(1)可得:数列{bn}是以1为首项,以 为公比的等比数列,进而可得:{bn}的前n项和.
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
练习册系列答案
相关题目