题目内容
【题目】已知椭圆与抛物线在第一象限的交点为,椭圆的左、右焦点分别为,其中也是抛物线的焦点,且.
(1)求椭圆的方程;
(2)过的直线(不与轴重合)交椭圆于两点,点为椭圆的左顶点,直线分别交直线于点,求证:为定值.
【答案】(1);(2)证明见解析.
【解析】
(1)根据题意,由抛物线性质可求焦点坐标和点坐标,结合椭圆定义,可求,计算即可求解;
(2)设,讨论直线与轴是否垂直,再根据直线与椭圆方程联立方程组法,结合韦达定理,计算,即可证明.
(1)抛物线的焦点为,
,∴,
∴,∴,
又,∴,
∴,∴,
又∵,∴,
∴椭圆的方程是:;
(2)设
当直线与轴垂直时,易得:或,
又,∴,或者,
∴,∴
当直线与不垂直时,设直线的方程为:,
联方程组,消去整理得:,
所以:,
又共线,
∴,得,同理:,
∴,
∴
又因为
∴,则
综上,为定值.
【题目】汽车尾气中含有一氧化碳(),碳氢化合物()等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:
不了解 | 了解 | 总计 | |
女性 | 50 | ||
男性 | 15 | 35 | 50 |
总计 | 100 |
(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为,问是否有的把握认为“对机动车强制报废标准是否了解与性别有关”?
(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中浓度与使用年限线性相关,试确定关于的回归方程,并预测该型号的汽车使用12年排放尾气中的浓度是使用4年的多少倍.
附:()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:用最小二乘法求线性回归方程系数公式:,.