ÌâÄ¿ÄÚÈÝ
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1Ϊµ½¶¨µãµÄ¾àÀëÓëµ½¶¨Ö±ÏߵľàÀëÏàµÈµÄ¶¯µãPµÄ¹ì¼££¬ÇúÏßC2ÊÇÓÉÇúÏßC1ÈÆ×ø±êÔµãO°´Ë³Ê±Õë·½ÏòÐýת30°Ðγɵģ®£¨1£©ÇóÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±ê£¬ÒÔ¼°ÇúÏßC2µÄ·½³Ì£»
£¨2£©¹ý¶¨µãM£¨m£¬0£©£¨m£¾2£©µÄÖ±Ïßl2½»ÇúÏßC2ÓÚA¡¢BÁ½µã£¬ÒÑÖªÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£®ÎÊ£ºÏÒ³¤|CD|ÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬ÇóÆä×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽºÍÅ×ÎïÏߵĶ¨Òå¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬ÓÉÅ×ÎïÏßC1µÄ¶Ô³ÆÖá¡¢½¹µã¡¢×¼Ïß¿ÉÖª£ºC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬µÃ³ö¼´¿É£»
£¨2£©ÓÉÓÚÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£¬Éè³öÖ±Ïßl2µÄбÂʿɵÃÖ±ÏßCDµÄ·½³Ì£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÁªÁ¢¸ùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³öÏÒ³¤|CD|£¬Í¨¹ý»»ÔªÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒ⣬¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓУ¬
»¯¼ò£¬µÃÅ×ÎïÏßC1µÄ·½³ÌΪ£º£®
Áîx=0£¬µÃy=0»ò£¬
Áîy=0£¬µÃx=0»ò£¬
¡àÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©ºÍ£¬£®
ÓÉÌâÒâ¿ÉÖª£¬ÇúÏßC1ΪÅ×ÎïÏߣ¬¹ý½¹µãÓë×¼Ïß´¹Ö±µÄÖ±ÏßΪ£¬»¯Îª£®
¿ÉÖª´Ë¶Ô³ÆÖá¹ýԵ㣬Çãб½ÇΪ30°£®
ÓÖ½¹µãµ½µÄ¾àÀëΪ£®
¡àC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÔòÖ±ÏßCDµÄ·½³ÌΪ£¬
ÔòµÃy2+4ky-4kb=0£¬
¡à¡÷=16k£¨k+b£©£¾0¢Ù
¡ày1+y2=-4k£¬y1•y2=-4kb£¬
ÉèÏÒCDµÄÖеãΪG£¨x3£¬y3£©£¬Ôòy3=-2k£¬x3=k£¨b+2k£©£®
¡ßG£¨x3£¬y3£©ÔÚÖ±Ïßl2ÉÏ£¬-2k=k£¨bk+2k2-m£©£¬¼´¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ0£¼k2£¼m-2£¬
==
Éèt=k2£¬Ôò0£¼t£¼m-2£®
¹¹Ô캯Êý£¬0£¼t£¼m-2£®
ÓÉÒÑÖªm£¾2£¬µ±£¬¼´2£¼m¡Ü3ʱ£¬f£¨t£©ÎÞ×î´óÖµ£¬ËùÒÔÏÒ³¤|CD|²»´æÔÚ×î´óÖµ£®
µ±m£¾3ʱ£¬f£¨t£©ÓÐ×î´óÖµ2£¨m-1£©£¬¼´ÏÒ³¤|CD|ÓÐ×î´óÖµ2£¨m-1£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÅ×ÎïÏߵĶ¨Òå¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
£¨2£©ÓÉÓÚÇúÏßC2ÉÏ´æÔÚ²»Í¬µÄÁ½µãC¡¢D¹ØÓÚÖ±Ïßl2¶Ô³Æ£¬Éè³öÖ±Ïßl2µÄбÂʿɵÃÖ±ÏßCDµÄ·½³Ì£¬ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÁªÁ¢¸ùÓëϵÊýµÄ¹Øϵ¼´¿ÉµÃ³öÏÒ³¤|CD|£¬Í¨¹ý»»ÔªÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©ÉèP£¨x£¬y£©£¬ÓÉÌâÒ⣬¿ÉÖªÇúÏßC1ΪÅ×ÎïÏߣ¬²¢ÇÒÓУ¬
»¯¼ò£¬µÃÅ×ÎïÏßC1µÄ·½³ÌΪ£º£®
Áîx=0£¬µÃy=0»ò£¬
Áîy=0£¬µÃx=0»ò£¬
¡àÇúÏßC1Óë×ø±êÖáµÄ½»µã×ø±êΪ£¨0£¬0£©ºÍ£¬£®
ÓÉÌâÒâ¿ÉÖª£¬ÇúÏßC1ΪÅ×ÎïÏߣ¬¹ý½¹µãÓë×¼Ïß´¹Ö±µÄÖ±ÏßΪ£¬»¯Îª£®
¿ÉÖª´Ë¶Ô³ÆÖá¹ýԵ㣬Çãб½ÇΪ30°£®
ÓÖ½¹µãµ½µÄ¾àÀëΪ£®
¡àC2ÊÇÒÔ£¨1£¬0£©Îª½¹µã£¬ÒÔx=-1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬Æä·½³ÌΪ£ºy2=4x£®
£¨2£©ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉÌâÒâÖªÖ±Ïßl2µÄбÂÊk´æÔÚÇÒ²»ÎªÁ㣬ÉèÖ±Ïßl2µÄ·½³ÌΪy=k£¨x-m£©£¬ÔòÖ±ÏßCDµÄ·½³ÌΪ£¬
ÔòµÃy2+4ky-4kb=0£¬
¡à¡÷=16k£¨k+b£©£¾0¢Ù
¡ày1+y2=-4k£¬y1•y2=-4kb£¬
ÉèÏÒCDµÄÖеãΪG£¨x3£¬y3£©£¬Ôòy3=-2k£¬x3=k£¨b+2k£©£®
¡ßG£¨x3£¬y3£©ÔÚÖ±Ïßl2ÉÏ£¬-2k=k£¨bk+2k2-m£©£¬¼´¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ0£¼k2£¼m-2£¬
==
Éèt=k2£¬Ôò0£¼t£¼m-2£®
¹¹Ô캯Êý£¬0£¼t£¼m-2£®
ÓÉÒÑÖªm£¾2£¬µ±£¬¼´2£¼m¡Ü3ʱ£¬f£¨t£©ÎÞ×î´óÖµ£¬ËùÒÔÏÒ³¤|CD|²»´æÔÚ×î´óÖµ£®
µ±m£¾3ʱ£¬f£¨t£©ÓÐ×î´óÖµ2£¨m-1£©£¬¼´ÏÒ³¤|CD|ÓÐ×î´óÖµ2£¨m-1£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÅ×ÎïÏߵĶ¨Òå¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÅ×ÎïÏßÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿